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Schmeidler's results on the equilibrium points of nonatomic games with strategy
sets in Euclidean n-space are generalized to nonatomic games with stategy sets in a
separable Banach space whose dual possesses the Radon-Nikodym property.
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I. INTRODUCTION

In [10], Schmeidler proved the existence of a Nash equilibrium in games
with a nonatomic measure space of players each of whose strategy sets is
the unit simplex in Euclidean n-space. For the case where the individual
payoff functions are restricted to depend only on the average response of
the other players rather than on each of their individual responses,
Schmeidler also showed the existence of a pure strategy equilibrium in
which almost every player chooses a basic vector in Euclidean n-space as
his strategy.

A restrictive aspect of Schmeidler's results is that the number of pure
strategies available to each player is uniformly bounded over the set of
players. It is natural to ask whether such an assumption can be relaxed. In
this paper we generalize the results in [10] to nonatomic games in which
each player's strategy set is a weakly compact, convex subset of a separable
Banach space whose dual has the Radon-Nikodym property. In this set­
ting, a pure strategy equilibrium is one in which almost every player is
limited to a subset of his strategy set consisting only of its extreme points.
For equivalent formulations of the hypothesis that a Banach space possess
the Radon-Nikodym property, the reader is referred to the comprehensive
work of Diestel and Uhl, [3, especially p. 217].

* This paper represents Johns Hopkins Working Paper No. 100, circulated in July 1982.
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Schmeidler proved his results through the use of the Fan-Glicksberg
fixed point theorem [5, 6J and the theory of integration of set-valued map­
pings whose range is Euclidean n-space as set out in [1]. Our proofs are
modelled after those of Schmeidler but we have to rely on the
corresponding theory of Bochner integration of set-valued mappings whose
range is a separable Banach space. The fact that such a space is not
required to be reflexive gives mathematical depth to the theory.

II. THE MODEL AND RESULTS

Let (T,!Y, Jl) be a complete, finite, nonatomic measure space, i.e., Jl is a
real-valued, nonnegative, countably additive, nonatomic measure defined
on a complete a-field !Y of subsets of a point set T such that Jl( T) is finite.
T is to be interpreted as the set of players.

Let X denote a Banach space over the real numbers R and let X* be its
topological dual. The norm in X and x* will be denoted by 11·11. co(A),
co(A), cl(A), ext(A) will respectively stand for the closed convex hull, con­
vex hull, norm closure and the set of extreme points of A.

Our next set of definitions involve Bochner integrable functions; see [3,
Chap. II J for details. Let L l(Jl' X) denote the space of all (equivalence
classes of) X-valued Bochner integrable functions / defined on T with
II/II = JT 11/(t)11 dJl(t). Similarly, L oo(Jl, X) denotes the space of all
(equivalence classes of) X-valued, Bochner integrable functions defined on
T that are essentially bounded, Le., such that

11/1100 =ess sup{ 11/(t)ll: t E T} < 00.

We shall abbreviate L1(Jl' R) and Loo(Jl, R) to L1(Jl) and Loo(Jl), respec­
tively. A Banach space X has the Radon-Nikodjm property with respect to
(T, !Y, Jl) if for each Jl-continuous vector measure G:!Y --+ X of bounded
variation, there exists gEL 1(Jl, X) such that G(A) =JA g( t) dJl( t) for all
A E!Y. X is said to have the Radon-Nikodjm property (RNP) if X has the
Radon-Nikodym property with respect to every finite measure space.

Next, we turn to the measurability of set-valued mappings; see [2,
Chap. III]. A set-valued mapping P: T --+ 2x is said to be measurable if the
graph of P,Gp={(t,x)ETxX:XEP(t)} is an element of !Y®aJ(X),
where aJ(X) is the set of Borel subsets of X. P is said to be integrably boun­
ded if there exists gEL 1(Jl) such that sup{IlxII :x E P( t) } :::::; g( t) for almost
all t in T. A selection from P is a map a: T --+ X such that a(t) E P(t) for
almost all t in T. The integral of a set-valued mapping P is defined for any
AE!Y by
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where ~ denotes the family of all measurable selections from P. For any
set-valued mapping P, the set-valued mappings co P and ext P will have
the obvious meaning. We shall also need the notation ~ for the set
{IE L l(fl, X): f(t) E P(t) for almost all tin T}.

A nonatomic game t§ is a quadruple [(T, f/, fl), X, P, u], where

l. (T, f/, fl) is a finite, complete, nonatomic measure space.

2. X is a separable Banach space whose dual possesses RNP.

3. P: T --+ 2x is an integrably bounded map such that ext P is
measurable and that for all t in T, P(t) is nonempty, convex and weakly
compact.

4. u: Tx Xx ff!p --+ R+ is a map such that

(i) for all XEff!p, u(',', x) is a Borel-measurable function on Gp;

(ii) for all tE T, xEff!p, u(t,', x) is quasi-concave and continuous
on P(t);

(iii) for all t E T, x E P(t), u(t, x, . ) is continuous on ff!p.

These conditions on the nonatomic game seem to us natural for our set­
ting; indeed conditions (3) and (4) are suggested by Remark 4 in [10]. We
can now state

THEOREM l. A nonatomic game t§ has an equilibrium strategy, i.e.,
x E ff!p such that for almost all t in T

u(t, x(t), x) ~ u(t, y, x) for all y E P(t).

For our next result we shall need an aggregation and a linearity
assumption, i.e.,

ASSUMPTION l. For all (t, y) in Gp and for all x E ff!p

u(t, y,X)=u(t, y, LX(t)dfl(t)}

ASSUMPTION 2. For all tET,xEff!p,u(t,',x) is linear on P(t).

We can now state

THEOREM 2. Under Assumptions 1 and 2, a nonatomic game t§ has an
approximate, pure strategy equilibrium, i.e., Ve > 0, there exists y E !l'eXIP

such that
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u: = Max u (t, z, f y(t) dJ1(t)).
ZEP(t) T
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We begin with a

Proof of Theorem 1. The proof is an application of the Fan-Glicksberg
fixed point theorem. An equilibrium strategy is a fixed point of the set­
valued mapping a: Ifp -. 2.!t'p, where

a(x)= {YEIfp : y(t)EB(t, x) for almost all tin T}

B(t, x) = {y(t) E P(t): u(t, y(t), x) ~ u(t, Z, x) 'v'ZE P(t)}.

We have to verify that the mapping a satisfies all the conditions required
by the Fan-Glicksberg theorem. We do this in a series of claims.

Claim 1. Ifp is weakly compact.
See proof of Corollary of Theorem 1 in [7].

Claim 2. The graph P belongs to 5" ® g#(X), where aJ(X) is the Borel
a-field of the set X.

We can apply Theorem III.40 and the remark following Definition 111.21
in [2], to assert that the graph of co ext P belongs to 5" ® aJ(X). Since
P(t) is weakly compact and convex for almost all tin T, an application of
the Krein-Milman theorem [8, Theorem 11.2.1] completes the proof of the
claim.

Claim 3. Ifp is nonempty and convex.
The convexity of filp follows directly from the convexity of P(t) for all t

in T. The fact that filp is nonempty follows, given Claim 2, from the
von Neumann-Aumann selection theorem, [2, Theorem III.22]. The fact
that such a selection is integrable follows from the fact that P is integrably
bounded and that a functionfis Bochner integrable if h Ilf(t)11 dJ1(t) < 00;
see [3, p. 45].

Claim 4. For each x in Ifp , a(x) is nonempty and convex.
Given quasi-concavity of u(t, ., x), it is clear that B( t, x) is convex and

hence a(x) is convex. From the continuity of u(t,', x) and weak com­
pactness of P(t), we obtain that B(t, x):;l: 0 for all tin T. Given Claim 2
and the Borel-measurability of u( ., ., x), we can apply Lemma 111.39 in [2]
to claim that B x : T-.2 X :BAt) =B(t,x) has a measurable selection.
Integrability follows from the fact that B(t, x) £;; P(t).
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Claim 5. For all t in T, the graph of B(t,') is weakly closed in
p(t) x ft'p.

This is a straightforward consequence of the continuity of u( t, ., .) on
P( t) x ft'p.

Claim 6. The graph of IX is weakly closed in ft'p x ft'p.
Let (xv, y.) converge weakly to (xo, Yo) such that YvEIX(Xv) for all v.

Suppose Yo ¢ IX(Xo), i.e., there exists S S; T, JL(S) > 0 such that

yo(t) ¢ B(t, xo) for all t E S.

Let Ps be the restriction of the mapping P to S and IXs(xo) = {z E ft'ps:
z(t) E B(t, xo)}. As in our proof of Claim 3, IXs(Xo) is nonempty and convex.
It is also closed. This can be seen by considering a sequence Zv E IXs(xo)
which converges to z, i.e., limv~ 00 lizv- zll = O. This implies that for almost
all t in T, limv~ 00 Ilz.(t) - z(t)11 =O. Our assertion follows from the closed­
ness of B(t, xo) which, in turn, is due to the continuity of u(t,', x) on P(t).

Now let Ys={XEft'ps:X(t)=yo(t) for all tin S}. By hypothesis,
Ys¢IXs(Xo). We can now apply the Hahn-Banach theorem (see [4,
Theorem 10, p. 417] for the precise form we need) to claim that there
exists a nonzero, continuous linear functional, i.e., fE (L l(JL, X))*,f =F 0,
such that

f(ys) > f(z) (1)

But by the Radon-Nikodym property [3, Theorem 1, p. 98], the dual of
L 1(JL, X) is L 00 (JL, X*). We can thus represent f by gEL 00 (JL, X*) and
rewrite (1) as

f (Yo(t), g(t) dJL(t»f (x(t), g(t) dJL(t)
s s

Since Yv converges weakly to Yo, certainly,

(2)

}~~ t (Yv(t), g(t) dJL(t) = t (Yo(t), g(t) dJL(t) (3)

Since I(Yv(t), g(t)1 ~ IIYv(t)II'llglloo, yv(t)EP(t) and P is integrably
bounded, we can apply Fatou's lemma [4, 111.9.35] to conclude

Now r(t)=limsupv~oo (Yv(t), g(t)=limk~oo (Yvk(t), g(t). Since
YVk(t) E P(t) and P(t) is weakly compact, the Eberlein-Smulian theorem [4,
V.6.1] guarantees that r(t) is attained at y(t)=limj~oo y{k(t). But by
Claim 5, ji{t) E B(t, xo) and we have a contradiction to (2).
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We can now apply the Fan-Glicksberg theorem to complete the proof.
Q.E.D.

Proof of Theorem 2. By an appeal to Theorem 1, we know that there
exists x E 2 p such that for almost all t, xU) E BU, x T), where x T== JT
x(t) dJl(t). Let

BeU, XT) = {x E ext P(t): u(t, x(t), XT) ~ u(t, Y, x T) \fy E ext P(t)}.

We can assert

Claim 1. For almost all tin T, BU, x T) = co BeU, XT)'
Since P(t) is a nonempty, weakly compact and convex subset of X, we

can apply a corollary of the Krein-Milman theorem [8, Corollary 11.2.3]
to assert that there exists p(t) E ext P(t) such that

u(t, p(t), x T)= m~ = sup u(t, q, XT)'
qEP(I)

Since p( t) E Be(t, x T), it is clear that Be( t, x T) £. B( t, x T)' Since B( t, x T) is
closed and convex, co Be(t, x T) £. B(t, x T). Now suppose the containment is
strict i.e. there exists ZE B( t, x T) and Z¢ co Be(t, x T)' By the Krein-Milman
theorem [8, Theorem 11.2.1] there exist Zl' Z2 in ext P(t) such that
z=zl+(I+A)Z2 for some O<A<1 with at least one zi¢Be(t,XT)' But
then u(t, z, XT) < m*, a contradiction.

Claim 2. h B(t, x T) dJl(t) = cl h Be(t, x T) dJl(t).
Since ext P and u( . ) are measurable, we can appeal to the application of

Lemma III.39 in [2] to assert that BeL X T ) is a measurable, set-valued
mapping. It is certainly integrably bounded such that for almost all t in T,
Be(t, XT) is nonempty and that co Be(t, x T) is weakly compact. The latter
property follows from Claim 1 and the fact that B(t, XT) is a closed, convex
and hence weakly closed, subset of a weakly compact set [4, 1.5.7a]. Since
X* has the Radon-Nikodym property, we can now apply Theorem 2'
along with the Remark in [7] to complete the proof of the Claim.

Now from Claim 2, we can assert that for all e> 0, there exist for almost
all t, y(t)EBe(t, XT) such that IIYT-XTII <e. This implies, by continuity of
u( t, x( t), . ), that for all e> 0, and for all t in T,

Ilu(t, x(t), x T) - u(t, x(t), YT)II < e

But from Claim 1, for almost all t in T,

u(t, Y, x T)= u(t, x(t), x T)

and the proof is finished. Q.E.D.
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IV. CONCLUDING REMARKS

1. The question as to whether Theorem 2 is valid without the
aggregation Assumption 1, has already been answered negatively by
Schmeidler, [10, Remark 2]. However, the question remains as to whether
we can do without the linearity Assumption 2. The difficulty is in the proof
of Claim 1; in particular in showing that a quasi-concave function attains
its maximum at an extreme point. It is not clear to us now this difficulty is
overcome even in the set-up of [10], where it reduces to showing the non­
emptiness of {e;le;EB(t, i)}, (equation c, p. 298 in [10]).

2. It is clear that relaxation of the separability assumption will require
fundamentally new mathematical techniques. In particular, the St. Beuve
extension of the Aumann measurable selection theorem requires the
underlying space to be Souslin, see [2, Theorem m.22].

3. We have used the Radon-Nikodym property of X* in working with
LOO(JJ., X*) as the dual of L1(JJ., X). This is required to establish Claims 1
and 6 in the proof of Theorem 1 and Claim 2 in the proof of Theorem 2.
The question as to whether one or both of our results are false without it
remains open.

4. The key to the approximation in Theorem 2 is the fact that
Lyapunov's theorem does not generalize to infinite spaces; see [3,
Chap. IX.1]. In this connection, we should draw the reader's attention to a
similar approximate theorem for a setting with a finite number of agents
each of whom has strategy sets in Euclidean n-space; see Rashid [9].
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